organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Srdjan Milovac,^a* Vesna Šimunić-Mežnarić,^a Hrvoj Vančik,^a Aleksandar Višnjevac^b and Biserka Kojić-Prodić^b

^aDepartment of Chemistry, Faculty of Science, University of Zagreb, Strossmayerov trg 14, HR-10000 Zagreb, Croatia, and ^bRudjer Bošković Institute, PO Box 180, HR-10002 Zagreb, Croatia

Correspondence e-mail: aleksandar.visnjevac@irb.hr

Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.030 wR factor = 0.083 Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Chloro-6-nitroso-2-norbornene dimer as a motif for supramolecular assembly

The title compound, 1,2-bis(5-chloronorbornen-6-yl)diazene 1,2-dioxide, $C_{14}H_{16}Cl_2N_2O_2$, has a crystallographic centre of symmetry. The norbornane cages are *trans*-oriented and the nitroso groups are in positions 3 and 6. This compound might be used as a starting point for the construction of two different polymeric structures due to the photochromism observed in the solid state.

Received 22 January 2001 Accepted 2 February 2001 Online 13 February 2001

Comment

Recently, we found that the monomer-dimer equilibrium of C-nitroso compounds could be used as a system for supramolecular self-assembly (see below, monomer-dimer equilibrium of C-nitroso compounds), because the azodioxide dimer affords photochromism in the solid state (Vančik *et al.*, 2001). Basic nitroso monomeric units convenient for the construction of supramolecular structures should have a rigid carbon skeleton with two azo groups which serve as chemical receptors oriented in proper spatial positions.

Here we propose the polymeric structures that may have nitroso groups on 2- and 6- (MOTIF 1) or on 3- and 6- (MOTIF 2) positions of the norbornane skeleton.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Possibilities of such structures depend on the stereochemistry of the basic motif, such as the title structure, (I) (see below), which has only one azodioxide group. The C=C double bond on each norbornene unit is a functionality on which additional nitroso groups, necessary for the polymer formation, could be added.

The inversion centre is located at the midpoint of the N=N bond which connects two monomeric units into the dimer structure (Fig. 1). The norbornene cages are *trans*-oriented.

Experimental

The title compound was prepared by direct addition of NOCl to norbornadiene (Ciattoni *et al.*, 1964; Metzger & Meier, 1971, 1990; Miller, 1961). Crystals of (I) were obtained by evaporation from a dichloromethane solution containing a few drops of tetrahydrofuran at 277 K.

Crystal data

$C_{14}H_{16}Cl_2N_2O_2$ $M_r = 315.19$ Monoclinic, $P2_1/n$ a = 5.9247 (7) Å b = 13.5925 (11) Å c = 8.3407 (7) Å $\beta = 95.452$ (8)° V = 668.7 (7) Å ³ Z = 2	$D_x = 1.565 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 25 reflections $\theta = 18.5-25.3^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 100 (5) K Prism, colourless $0.18 \times 0.16 \times 0.12 \text{ mm}$	
Data collection Enraf-Nonius CAD-4 diffract- ometer $\theta/2\theta$ scans Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.920, T_{max} = 0.968$ 1527 measured reflections 1364 independent reflections 1076 reflections with $I > 2\sigma(I)$	$R_{int} = 0.025$ $\theta_{max} = 26.3^{\circ}$ $h = -7 \rightarrow 7$ $k = -16 \rightarrow 0$ $l = 0 \rightarrow 10$ 3 standard reflections frequency: 120 min intensity decay: none	
Refinement Refinement on F^2 $R[F^2 > (F^2)] = 0.030$ $wR(F^2) = 0.083$ S = 1.02 I364 reflections I32 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0407P)] + 0.40P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.011$ $\Delta\rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$	

Extinction correction: SHELXL97

Extinction coefficient: 0.0055 (12)

Figure 1

An ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Table 1

Selected geometric parameters (Å, °).

Cl1-C5	1.796 (2)	N3-C8	1.481 (2)
O2-N3	1.268 (2)	N3-N3 ⁱ	1.315 (2)
O2-N3-C8	123.01 (14)	Cl1-C5-C8	112.90 (11)
O2-N3-N3 ⁱ	120.92 (10)	N3-C8-C5	113.24 (15)
N3 ⁱ -N3-C8	116.02 (12)	N3-C8-C7	111.39 (14)
Cl1-C5-C6	110.55 (12)		

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

All H-atom positional and U_{iso} parameters were refined. C-H bond lengths lie between 0.91 (2) and 0.99 (2) Å.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *SET4* and *CELDIM* in *CAD-4 Software* (Enraf–Nonius, 1989); data reduction: *HELENA* (Spek, 1997); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976); software used to prepare material for publication: *PLATON* (Spek, 1990).

References

- Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). *SIR*97. University of Bari, Italy.
- Ciattoni, P., Lorenzini, A. & Gallinella, E. (1964). Chim. Ind. 46, 286-291.
- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Metzger, H. & Meier, H. (1971). Methoden der Organischen Chemie, Houben-Weyl, Band 11, pp. 926–938.
- Metzger, H. & Meier, H. (1990). Methoden der Organischen Chemie, Houben-Weyl, Band E16a, pp. 958–959.
- Miller, J. B. (1961). J. Org. Chem. 26, 4905-4907.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Spek, A. L. (1997). HELENA. Utrecht University, The Netherlands.
- Vančik, H., Šimunić-Mežnarić, V., Čaleta, I., Mlinarić-Majerski, K. & Veljković, J. (2001). In preparation.

All H-atom parameters refined